Highly Efficient Computation of the Basal kon using Direct Simulation of Protein–Protein Association with Flexible Molecular Models

نویسندگان

  • Ali S. Saglam
  • Lillian T. Chong
چکیده

An essential baseline for determining the extent to which electrostatic interactions enhance the kinetics of protein-protein association is the "basal" kon, which is the rate constant for association in the absence of electrostatic interactions. However, since such association events are beyond the milliseconds time scale, it has not been practical to compute the basal kon by directly simulating the association with flexible models. Here, we computed the basal kon for barnase and barstar, two of the most rapidly associating proteins, using highly efficient, flexible molecular simulations. These simulations involved (a) pseudoatomic protein models that reproduce the molecular shapes, electrostatic, and diffusion properties of all-atom models, and (b) application of the weighted ensemble path sampling strategy, which enhanced the efficiency of generating association events by >130-fold. We also examined the extent to which the computed basal kon is affected by inclusion of intermolecular hydrodynamic interactions in the simulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neurofolicullar hamartoma presenting as a rare adnexal neoplasm in association with basal cell carcinoma

Background: Neurofollicular hamartoma (NFH) is characterized histopathologically by fascicles of spindle cells that laterally delimited by hyperplastic folliculosebaceous units. It usually appears on face, near the nose or nasolabial fold. It does not manifest true neural differentiation and recently the term spindle cell predominant trichodiscoma (SCPT) has been used instead. Case Presentatio...

متن کامل

Identification of RNA-binding sites in artemin based on docking energy landscapes and molecular dynamics simulation

There are questions concerning the functions of artemin, an abundant stress protein found in Artemiaduring embryo development. It has been reported that artemin binds RNA at high temperatures in vitro, suggesting an RNA protective role. In this study, we investigated the possibility of the presence of RNA-bindingsites and their structural properties in artemin, using docking energy ...

متن کامل

Mechanistic prospective for human PrPC conversion to PrPSc: Molecular dynamic insights

PrPC conversion to PrPSc isoform is the main known cause for prion diseases including Crutzfeldt-Jakob, Gerstmann-Sträussler-Sheinker syndrome and fatal familial insomnia in human. The precise mechanism underling this conversion is yet to be well understood. In the present work,  using the coordinate file of PrPC (available on the Protein Data Bank) as a starting structure, separate molecular d...

متن کامل

Investigation the Mechanism of Interaction between Inhibitor ALISERTIB with Protein Kinase A and B Using Modeling, Docking and Molecular Dynamics Simulation

The high level of conservation in ATP-binding sites of protein kinases increasingly demandsthe quest to find selective inhibitors with little cross reactivity. Kinase kinases are a recently discovered group of Kinases found to be involved in several mitotic events. These proteins represent attractive targets for cancer therapy with several small molecule inhibitors undergoing different ph...

متن کامل

Effects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation

Microtubule Affinity-Regulating Kinase 2 (MARK2) protein has a substantial role in regulation of vital cellular processes like induction of polarity, regulation of cell junctions, cytoskeleton structure and cell differentiation. The abnormal function of this protein has been associated with a number of pathological conditions like Alzheimer disease, autism, several carcinomas and development of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 120  شماره 

صفحات  -

تاریخ انتشار 2016